
PHYSICAL REVIEW E JUNE 2000VOLUME 61, NUMBER 6
Random energy model at complex temperatures
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~Received 1 June 1999; revised manuscript received 7 February 2000!

The complete phase diagram of the random energy model is obtained for complex temperatures using the
method proposed by Derrida. We find the density of zeroes for the statistical sum. Then the method is applied
to the generalized random energy model. This allowed us to propose an analytical method for investigating
zeroes of the statistical sum for finite-dimensional systems.

PACS number~s!: 05.40.2a
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Nowdays the random energy model~REM! @1# is one of
the most widely used models of statistical mechanics.
sides the direct use in spin-glasses the model has a
range of applications in diverse areas of modern theore
physics and biophysics. Recently the model found sev
unexpected applications in theories of well-developed tur
lence @2#, and strings@3–5#. On the other hand, it is well
known that the model enables one to treat the fundame
problems of information theory in terms of statistical m
chanics. In particular, the problems connected with inform
tion transmission through a noisy channel can be formula
and effectively solved in the language of REM@6,7#. Though
REM has a simple thermodynamic structure, at the sa
time it contains all essential ingredients of phase transi
@1,8,9#. For temperatures less than the criticalTc ~to be ob-
tained based on clear and semi-intuitive physical reasons! the
system is frozen in the spin-glass phase with one leve
replica symmetry breaking. Along with this rough thermod
namical phase transition, there are some ‘‘mild,’’ mes
copic phase transitions in the domain (T̃,Tc), T̃.Tc @1,9#.

It is well known that one can investigate the structure a
properties of phase transitions by studying analytical prop
ties of thermodynamical quantities in a complex temperat
plane or/and magnetic field@10–12#. Indeed, if a phase tran
sition is associated with a singular behavior of thermo
namic potential in the thermodynamic limit~in our case it is
the free energy or statistical sum!, then one can obtain im
portant physical information by the consideration of its an
lytical properties in the complex plane. The method was p
posed by Yang and Lee@13# ~for the case of complex
magnetic fields!, and Fisher@14# ~for the case of complex
temperatures!. It has a large variety of different application
in statistical physics; furthermore, it is one of the most ex
and powerful methods for estimating critical indices a
constructing phase diagrams. In particular, the method is
plied to an investigation of phase transitions in disordered
strongly frustrated systems, since occasionally all ot
methods prove not so illustrating or are hardly realizab
Recently, a dense domain of phase transitions has been
tained with the help of this method in a nondisordered
fully frustrated model@12#.

The REM has been investigated in a complex fie
temperature plane@15,16# and the aim of the present paper
to continue this program, and to derive the complete ph
diagram for generalizations of REM. Furthermore, we p
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pose a method for investigating analytical properties of th
modynamical quantities of finite-dimensional systems. Th
is another, more sound motivation for the prese
investigation—recently it was shown that REM at compl
temperatures is closely connected with strings@4,5#. In dis-
ordered systems there is an averaging with the help of
nonical Gibbs distribution at given temperature, and aver
ing via the frozen disorder. In REM and related models
energy levels are considered to be random quantities, and
distribution is derived from a specific ‘‘microscopic’’ Hamil
tonian @1,2#,

H52 (
1< i 1, i 2•••, i p<N

j i 1• i p
si 1

•••si p
. ~1!

Here si are 61 spins, j i 1••• i p
are quenched couplings wit

the normal distribution and a proper scale

r~ j i 1••• i p
!5A2Cp

N

Np
exp$22Cp

Nj i 1••• i p

2 /N%, ~2!

whereCp
N5N!/ p!(N2p)!. It is possible to prove that in the

limit of large p all energy levels are independently distri
uted with the probability

P~E!5A 1

Np
exp~2E2/N!. ~3!

For the case of diluted coupling one keeps onlyaN nonzero
members in Eq.~1! while the summation is performed ove
the set of indices (i 1••• i p). Now we again have independen
random energies with the distribution

r~E!5
1

2pE2 i`

i`

dxe2Ek2Nc(x), ~4!

where

c~x!5a ln chx. ~5!

Case~3! corresponds to the choice

c~x!5
x2

4
. ~6!
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Let us define a partition function and a free energy. T
consideration of complex temperatures is instrumental in
investigation of analytical properties of thermodynamic
quantities. In particular, the conventional definitions of s
tistical physics should be adapted to this purpose. The p
tion function is defined as usual,

Z5(
a

e2bEa.

Further, in the thermodynamical limit the expressions like

^ lnuZu&, ^ lnuReZu& ~7!

are identical. Below we will refer to the quantity^ lnuReZu&
as the free energy, taking into account that for real temp
tures it is simply related to the usual free energy,

^ lnuReZu&[
1

2
^ lnuReZu2&

5
1

2 F E
0

`

dt
e2t

t
2K E

0

`

dt
e2tuReZu2

t L G
5

1

2E0

`

dt ln te2t1E
0

`

ln td^e2t2uReZu2&

5
G8~1!

2
1

1

2E0

`

ln tde2f, ~8!

where^ & means the averaging over Eq.~4!. In Eq. ~8! we
made a substitutiont→t2. Further,

^e2t2uReZu2&5e2f5
1

Ap
E

2`

`

dze2z2/4f ~zt!2N
~9!

and

f ~A!5
1

2pE2 i`

i`

dxE
2`

`

dEeNc(x)2xE1 i ~A/2![exp(bE)1exp(b̄E)] .

~10!

The functione2f in Eq. ~8! is like the step function. It is
equal to 1 at2`, ln t,2u0, then to an exponential accu
racy it is zero in the interval2u0, ln t,`. The derivative of
the step function is thed function. So, in the thermodynami
limit Eq. ~8! gives (u0 to be defined later!, that

^ lnuReZu&5u0 . ~11!

Let us perform integration overE by introducing the function
g(x). We have

f ~A!5
1

2pE2 i`

i`

dxeNc(x)

3E
0

`

dyyx21e~ iA/2!(y11 ib2 /b11y12 ib2 /b1)

5E
2 i`

i`

dxec(x)2x ln Ag~x,A!, ~12!
e
e
l
-
ti-

a-

where

g~x,A!5E
0

`

dyyx21eiy cos[b2 /b1ln(y/A)] . ~13!

In Eq. ~10! the integral is taken along the line that passes
point x50 on the right-hand side. As we are interested in
region of valuesA!1, so we have a large parameteru ln Au in
the exponent, we move the integration loop to the position
the saddle point. If the saddle pointx belongs to the interva
(0,21), then the pole atx50 is the only singularity to be
intersected. The residue of our function is equal to 1. So,
obtain

f ~A!21'exp@Nc~x!2x ln A#, ~14!

wherex is determined from the equation of the saddle po

Nc8~x!5 ln A ~15!

and the preexponents were omitted. Besides Eq.~14! there
are another two asymptotic forms forf (A,l), when the
saddle point intersects the singularities at pointsx521 and
x522. One cannot calculate directly the expression
f (A). To calculatef (A) let us consider the derivatives

f A85
i

4pE2 i`

i`

dxE
2`

`

dEe2Ex1Nc(x)1~ iA/2!(ebE1eb̄E)

3~ebE1eb̄E!

5
i

4pE2 i`

i`

ec[b(x11)]2x ln Ag~x,A!dx

1
i

4pE2 i`

i`

eNc[ b̄(x11)]2x ln Ag~x,A!dx. ~16!

To identify the saddle point one has to move the integrat
line to the left. Again the pole is intersected at point 0,

f 8~A!'
i

2
~eNc(b)1eNc(b̄)!, ~17!

f ~A!21'
iA

2
~eNc(b)1eNc[ b̄] !. ~18!

Let us consider now the third type of asymptotics. The co
sideration of the second-order derivative gives

d2f

dA2
52

1

8pE2 i`

i`

dxE
2`

`

dEe2xE1Nc(x)1~ iA/2!(ebE1eb̄E)

3~e2bE1e2b̄E12e2b1E!

52
1

4pE2 i`

i`

eNc[(x12b1)] 2x ln Ag~x!dx

2
1

8pE2 i`

i`

eNc(x12b)2x ln Ag~x!dx

2
1

8pE2 i`

i`

eNc[(x12b̄)] 2x ln Ag~x!. ~19!
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During the shift, the integration line intersects the pole, a
one has

d2f

dA2
'2

eNc[(2b1])

2
, ~20!

f 21'2
A2eNc(2b1)

4
. ~21!

We have three asymptotic forms for the functionf (A): for
the spin-glass phase~14!, for the paramagnetic phase~18!,
and for the Lee-Yang-Fisher phase~21!. We have

e2f5
1

2Ap
E

2`

`

e2z2/41zi2Nt[eaNc(b)1ec(b̄)] , ~22!

e2f5
1

2Ap
E

2`

`

exp@2z2/422NeNc(bx)2x ln(zt)#,

~23!
Nc8~bx!5 ln~zt!,

e2f5
1

2Ap
E

2`

`

exp~2z2/42z224Nt2eaNc(2b1)!. ~24!

One can see that in the thermodynamic limit these exp
sions look like step functions. Using Eq.~11! we derive an
expression for free energy.

Let us first consider case~1!. For the paramagnetic phas

^ lnuReZu&5N ln 21
N~b1

22b2
2!

4
. ~25!

For the spin glass phase with some replica symmetry bre
ing

^ lnuReZu&5NAln 2b1 . ~26!

For the phase without any magnetization, but with some L
Yang-Fisher zeros for the partition sum

^ lnuReZu&5
1

2
N ln 21

b1
2

2
N. ~27!

Let us consider now the diluted version of the model. W
take Eq.~5! for function c. For the paramagnetic phase

^ lnuRezu&5N ln 21aN Re ln coshb. ~28!

For the Lee-Yang-Fisher phase

^ lnuRezu&5
N

2
ln 21

aN

2
ln cosh 2b1 . ~29!

For the spin glass phase

^ ln Reuzu&5aNb1 tanhbc , ~30!

where forbc we have

a@bc tanhbc2 ln coshbc#5 ln 2. ~31!
d

s-

k-

e-

e

One can find the boundary lines between two phases f
the coincidence of two equations. The boundary betw
Lee-Yang-Fisher and spin glass phases is the line

b15b0 , b0,b2,`, ~32!

where the multicriticity point (b1 ,b0) lies on the intersec-
tion of line ~37! with the boundary of spin glass and Le
Yang-Fisher phases,

sin2~b2!5
21/a212tanh2b1

21/a~12tanh2b1!
. ~33!

For the case of ferromagnetic couplings we have the fe
magnetic phase with the old expression withb15” 0, b2
50. Let us consider the density of partition zeros near theb1
axes. For the density of zeros we have the following expr
sion @17#:

1

2p S d2

db1
2

1
d2

db1
2D ^ lnuZu&. ~34!

For the Lee-Yang-Fisher phase we have

r~b1 ,b2!5
1

p

a

cosh~b1!2
. ~35!

Near the paramagnetic–spin glass transition line we obta

r~b1 ,b2!5
1

p

a

cosh~b1!2
d~b11b22bc!~b12bc!.

~36!

Now consider the phase structure of the generalized ran
energy model~GREM! in the domain of complexT. The spin
glass phase transition conditions are the known ones withb1
instead of 1/T. The conditions for phase transition to th
third Lee-Yang-Fisher phase are more complicated. We h
to consider an expression like

K)
a

)
ba

expi
A

2
@elaEa1lbEb1el̄aEa1l̄bEb#L . ~37!

Upon expanding the exponent~to get the Lee-Yang-Fishe
phase!, we found

K)
a

)
ba

12A2/4@e(la1l̄a)Ea1(lb1l̄b)Eb#L . ~38!

It follows from this expression that if the Lee-Yang-Fish
phase takes place at some level of hierarchy, then no p
magnetic phase will occur at higher levels, so the only p
sible choice will be the spin glass phase. This statemen
perhaps, the main point of the present work.

Let us consider the diluted version of GREM@18# with an
infinite hierarchy numberM. We can consider the case o
largeM with smooth distribution ofzk ~the number of cou-
plings at level k! and Nk ~the number of thekth level
branches is 2Nk). In this case we can introduce a continuo
variablev5k/M with the definition range@0,1#, which labels
the level of hierarchy, and we define the distributions
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zk[dz5zdv, Nk[dN5n8~v !dv, dv5
1

M
, ~39!

wheren(v) is the given function~the entropy in bits s!. The
variablev (0,v,1) parametrizes the level of the hiera
chical tree andz is just a parameter~for our spin system z is
a total number of couplings and the parameterv labels the
level of hierarchy!. Similarly to the case of diluted GREM a
real T one finds

2
bF

N
5z@12v2~b!#Re ln coshb1n@v2~b!# ln 2

1n@v2~b!# ln 2/21z@v2~b!2v1~b!#/2 ln cosh 2b1

1zb1E
0

v1(b)

dv0gS z

n8~v0!
D , ~40!

wherev2(b), v1(b) are determined from the equations

2z Re ln coshb1n8@v2~b!# ln 25z ln cosh 2b1z, ~41!

Re ln coshb1n8@v1~b!# ln 25b1zg@z/n8~v1!#,

and the functiong(x) from

1

2
~11g!ln~11g!1

1

2
~12g!ln~12g!] 5

ln 2

x
. ~42!

One can regard Eq.~40! as a free energy for a chain o
subsystems. Some part of subsystems 0,v,v1 is in the spin
glass phase, the partv1,v,v2 in Lee-Yang-Fisher, and the
restv2,v,1 is in the paramagnetic phase. For the case
Edwards-Anderson model placed on ad-dimensional hyper-
cubic lattice

z5Nd, E52vNd, n~v !5
Ns~2vdN!

ln 2
. ~43!

HereE is the energy ands(E) is the entropy as a function o
energy for the corresponding ferromagnetic Ising model.
f

t

given b̃0 , v0 is defined via the energy of the ferromagne
model on the same lattice at temperature 1/b̃0,

v0~ b̃0!52
E~ b̃0!

Nd
. ~44!

Here one can findb̃0 according to the conventional defin
tion

ds

d E
5

1

t
[b̃. ~45!

We obtain for the free energy

2
bF

Nd
5@12v2~b!#Re ln coshb1s@v2~b!#1@v2~b!

2v1~b!#/2 ln cosh 2b11s@v2~b!#/~2Nd!

1b1E
0

v1(b)

dv0f S ln 2

b̃~v0!
D . ~46!

One can determinev1 ,v2 from the condition of the extre-
mum for Eq.~46!.

The method was proposed for approximate calculation
statistical mechanics of a disordered model on finite lattic
It enables one also to identify Lee-Yang-Fisher zeroes.
case of real temperatures our generalization of REM gi
5% accuracy. In our case we hope to achieve the same a
racy of calculations.

The solution of generalized REM~GREM! at complex
temperatures was successful owing to a simple observa
~38! that on the hierarchy of generalized REM a new~Lee-
Yang-Fisher! phase will exist only at levels between par
magnetic and spin glass phases.

We are grateful to Fundacion Andes for Grant N
C-13413/1 and ISTC for Grant No. A-102.
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