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Random energy model at complex temperatures
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The complete phase diagram of the random energy model is obtained for complex temperatures using the
method proposed by Derrida. We find the density of zeroes for the statistical sum. Then the method is applied
to the generalized random energy model. This allowed us to propose an analytical method for investigating
zeroes of the statistical sum for finite-dimensional systems.

PACS numbdps): 05.40—a

Nowdays the random energy mod&EM) [1] is one of pose a method for investigating analytical properties of ther-
the most widely used models of statistical mechanics. Bemodynamical quantities of finite-dimensional systems. There
sides the direct use in spin-glasses the model has a wide another, more sound motivation for the present
range of applications in diverse areas of modern theoreticahvestigation—recently it was shown that REM at complex
physics and biophysics. Recently the model found severabmperatures is closely connected with strifig®]. In dis-
unexpected applications in theories of well-developed turbuerdered systems there is an averaging with the help of ca-
lence[2], and stringg3-5]. On the other hand, it is well- nonical Gibbs distribution at given temperature, and averag-
known that the model enables one to treat the fundamentahg via the frozen disorder. In REM and related models the
problems of information theory in terms of statistical me-energy levels are considered to be random quantities, and the
chanics. In particular, the problems connected with informadistribution is derived from a specific “microscopic” Hamil-
tion transmission through a noisy channel can be formulatetbnian[1,2],
and effectively solved in the language of REB|7]. Though
REM has a simple thermodynamic structure, at the same
time it contains all essential ingredients of phase transition
[1,8,9. For temperatures less than the critidal (to be ob-
tained based on clear and semi-intuitive physical regdbes  Heres; are £1 spins,j; .. i, are quenched couplings with

system is frozen in the spin-glass phase with one level ofhe normal distribution and a proper scale
replica symmetry breaking. Along with this rough thermody-

namical phase transition, there are some “mild,” mesos- 5cN
copic phase transitions in the domaif, T,), T>T, [1,9]. p(iy )= N—:exp[—zcl’jjizlmip/N}, 2
It is well known that one can investigate the structure and

properties of phase transitions by studying analytical proper\-Nherng: N!/p!(N—p)!. It is possible to prove that in the

ties of thermodynamical quantities in a complex temperature . . i
plane or/and magnetic fie[d0—-13. Indeed, if a phase tran- (Er,:;'é %tlﬁrt%z %gLsgiﬁgy levels are independently distrib

sition is associated with a singular behavior of thermody-
namic potential in the thermodynamic lin{in our case it is 1
P(E)= \/mexp(—EZ/N).

H=— > Jigi Siy S @

1<iq<ip--<ip=N p

the free energy or statistical sythen one can obtain im-
portant physical information by the consideration of its ana-

lytical properties in the complex plane. The method was pro- . .
posed by Yang and Leél3] (for the case of complex For the case of diluted coupling one keeps oaly nonzero

magnetic fields and Fishef14] (for the case of complex members _in Eq<1_) whi_le the summatio_n is performed over
temperatures It has a large variety of different applications the set of |nd|c_e3|(L-_- Tp)- pr_we again have independent
in statistical physics; furthermore, it is one of the most exacfandom energies with the distribution
and powerful methods for estimating critical indices and 1 (i
constructing phas_,e d_|agrams. In partlcgl.ar, the method is ap- p(E)= _J dxe Ek-Nu), ()
plied to an investigation of phase transitions in disordered or 27 ) —je
strongly frustrated systems, since occasionally all other
methods prove not so illustrating or are hardly realizablewhere
Recently, a dense domain of phase transitions has been ob-
tained with the help of this method in a nondisordered but p(x)=alnchx )
fully frustrated mode[12].

The REM has been investigated in a complex field/Case(3) corresponds to the choice
temperature plangl5,16 and the aim of the present paper is
to continue this program, and to derive the complete phase
diagram for generalizations of REM. Furthermore, we pro-

()

X2

h(X)= 7 (6)
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Let us define a partition function and a free energy. Thewhere
consideration of complex temperatures is instrumental in the
investigation of analytical properties of thermodynamical _ f - — 140y cos[B, /B1In(y/A)]

" . . x,A)=| d gV coslBz/Bain(y/A)l 13
quantities. In particular, the conventional definitions of sta- 9(x.A) 0 vy (13
tistical physics should be adapted to this purpose. The parti-

tion function is defined as usual, In Eq. (10) the integral is taken along the line that passes the
pointx=0 on the right-hand side. As we are interested in the

7= o ke region of valuesA<1, so we have a large paramefierA| in
~ ) the exponent, we move the integration loop to the position of

the saddle point. If the saddle poxbelongs to the interval
Further, in the thermodynamical limit the expressions like (0,—1), then the pole ax=0 is the only singularity to be
intersected. The residue of our function is equal to 1. So, we

(In|Z]), (In[ReZ]) (7)  obtain
are identical. Below we will refer to the quantifyn|ReZ|) f(A)—1~exgd N¢(x)—xInA], (14
as the free energy, taking into account that for real tempera- ) ) ) )
tures it is simply related to the usual free energy, wherex is determined from the equation of the saddle point

1 Nyg' (x)=InA (15
(In|ReZ|)= = (In|ReZ|?) _ .

2 and the preexponents were omitted. Besides (E4). there
are another two asymptotic forms fdi(A,\), when the

1 o e_t o0 e—t|ReZ|2 . . . . .
_ f dt— — J dt saddle point intersects the singularities at poiis—1 and
2| Jo t 0 t x=—2. One cannot calculate directly the expression for
1 (= . f(A). To calculatef (A) let us consider the derivatives
— 2| dtinte '+ | Intd(e t’IRez% - . _
2)o 0 o _ i BE | oBE
fr=—oH dx dEe Ex+Ny(x)+ (1A/2)(eP=+ePF)
A 47T —joo —®
——F,(1)+1le tde ¢ 8 Zi
~ T2 g, nee ® X (ePE + ePE)
where( ) means the averaging over Ed). In Eq. (8) we _ '_ 1 eUBOEI=XINAg(y A)dx
made a substitution—t2. Further, 4] i '
1 (= L[ oG 1)1-xIn A
~tAReZ|?y _g=b— - 22145 (5 )2 +—f eNUABXEDI=xInAg(x A)dx. 16
(e y=e = ~_dze (2 9) vl 9(x,A) (16)

To identify the saddle point one has to move the integration

and line to the left. Again the pole is intersected at point 0,

f(A):Zif'“ dxr o E N ¥0) — XE-+i(A12)[exp(BE) + exp(BE)]
T —o

—jw f'(A)~ Iz(er(B)+eNl//(ﬁ)), (17)
(10)

The functione™? in Eq. (8) is like the step function. It is f(A)_lgﬂ(eNeb(B)jLer[E]). (18)

equal to 1 at—»<Int<-—ug then to an exponential accu- 2

racy it is zero in the interval uy<<In t<<cc. The derivative of

the step function is thé function. So, in the thermodynamic

limit Eq. (8) gives (g to be defined latgr that

Let us consider now the third type of asymptotics. The con-
sideration of the second-order derivative gives

2 i - _
(In|ReZ[)=uo. (11) ar__1r dxf JE & XE+NU()-+(IA/2)(ePE+ )
dA2 87T —joo — o
Let us perform integration oveét by introducing the function -
g(x). We have X (@2PE + @2PE 1 2?h1F)
1 1 1 ' Ny[(x+2B1)]—xIn A
f(A)=EJ ~ dxev) =~ an) .8 28, g(x)dx
—jo —jo
* : i —i 1 [i=
X J;) dyy>(—1e(|A/2)(yl+ BalBy4y1=1By1Byy _ a ' eNl//(X+ZB)7X|n Ag(X)dX
e

joo 1 joo —
— f dXG'JI(X)_XlnAg(X,A), (12) _ eN:,//[(x-%—ZB)]—xlnAg(X)‘ (19)

—io 87 ) i
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During the shift, the integration line intersects the pole, andOne can find the boundary lines between two phases from

one has

d2f eNvl(284])

w7 20
A2eN¥(281)
folem—f—. (21)

We have three asymptotic forms for the functibfA): for
the spin-glass phas@d4), for the paramagnetic phas8),
and for the Lee-Yang-Fisher pha&zl). We have

L™ 2y sioNieaNUB) 4 (B
/P —z°/4+zi2"t[e +e"P]
e "= e : (22
2\mw) =
e*¢zi - eXF[_ZZM__2NeNz,//(ﬁx)7xIn(zt)]
2\ =
(23
Ny’ (Bx)=In(zt),
e’”!’zL i exp( — 2214— 222N t2eN¥(2h1)) - (24)
2Jm) -

the coincidence of two equations. The boundary between
Lee-Yang-Fisher and spin glass phases is the line

B1=Bo, Bo<Br<, (32

where the multicriticity point 8,,8,) lies on the intersec-

tion of line (37) with the boundary of spin glass and Lee-
Yang-Fisher phases,

2YVe—1—tantfg;
2V(1—tanifB,)

Sinf(B,) = (33

For the case of ferromagnetic couplings we have the ferro-
magnetic phase with the old expression wgh+0, B,

=0. Let us consider the density of partition zeros nearzhe
axes. For the density of zeros we have the following expres-
sion[17]:

! ( d° + dz) | |Z|) (34
| —=*+—=[(In|Z]).
2m\dp;  dp; <

For the Lee-Yang-Fisher phase we have

1 a
p(B1.B2)=— (395

7 cosh{B)?

One can see that in the thermodynamic limit these expres-

sions look like step functions. Using E(L1) we derive an

expression for free energy.

Let us first consider casd). For the paramagnetic phase

N(BI-B3)

(In|ReZ|)=NIn2+ )

(25

Near the paramagnetic—spin glass transition line we obtain

1
P(Bl,ﬁz):; 8(B1+ B2=Bc)(B1—Be)-

(36)

e
coshBy)?

Now consider the phase structure of the generalized random

For the spin glass phase with some replica symmetry brealenergy mode(GREM) in the domain of compleX. The spin

ing
(In|ReZ|y=N+In2p;. (26)

glass phase transition conditions are the known ones gvith
instead of 1T. The conditions for phase transition to the
third Lee-Yang-Fisher phase are more complicated. We have
to consider an expression like

For the phase without any magnetization, but with some Lee-

Yang-Fisher zeros for the partition sum

1 B
(IaneZ|>=§NIn2+?N. (27

A — —
<H I1 expi E[e)‘aEaH‘ﬁEﬁ—l- e)‘aEa+)‘BEB]>. (37
a By

Upon expanding the exponeftb get the Lee-Yang-Fisher
phase, we found

Let us consider now the diluted version of the model. We

take Eq.(5) for function . For the paramagnetic phase
(In|Rez|)=NIn2+ aN ReIn coshg. (28

For the Lee-Yang-Fisher phase
N aN
(In|Rez|>=EIn 2+ 7Incosh281. (29

For the spin glass phase
(InR€z|)=aNp; tanhB,, (30
where for 3. we have

a| B:.tanhB.—IncoshB.]=1In 2. (3D

<H I1 1—A2/4{e()‘a+)‘a)EaJ“(}‘B“‘B)EB]>. (39
a B,

It follows from this expression that if the Lee-Yang-Fisher
phase takes place at some level of hierarchy, then no para-
magnetic phase will occur at higher levels, so the only pos-
sible choice will be the spin glass phase. This statement is,
perhaps, the main point of the present work.

Let us consider the diluted version of GREWB] with an
infinite hierarchy numbeM. We can consider the case of
large M with smooth distribution of, (the number of cou-
plings at level k and Ny (the number of thekth level
branches is ¥). In this case we can introduce a continuous
variablev = k/M with the definition rang@0, 1], which labels
the level of hierarchy, and we define the distributions
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given ,Tfo, v is defined via the energy of the ferromagnetic

1
a=dz=zd,  Ne=dN=n'(v)dv, dv=gr, B9 g0l on the same lattice at temperaturg,l/

M
wheren(v) is the given functior(the entropy in bits)s The E(Bo)
variablev (0<v<1) parametrizes the level of the hierar- vo(Bo)=— Po ) (44)
chical tree and is just a paramete(for our spin system z is Nd
a total number of couplings and the parametdabels the
level of hierarchy. Similarly to the case of diluted GREM at Here one can finq~30 according to the conventional defini-

real T one finds tion
_BE_ 1- Rel + In2 ds 1
N =41~ va(B)IReIncostB+n[va(B)]in * g 5
+n[va(B)]In2/2+Z[v(B)—v1(B)]1/2In cosh B,
“ We obtain for the free energy
v1 V4
+Zﬁlfo dl)og n’(vo)> f (40) BF

~Ng [ vaB)]RelncostB+s[va(B)]+[va(B)
wherev,(8), v4(B) are determined from the equations

2zRelncoshB+n'[v,y(B)]In2=zIncosh 28,z, (41) ~va(B)lizincosh 3y +slua(B)JI(2Nd)

v1(B) In2
RelncostB+n'[vi(B)]In2=B1zg z/n"(vy)], +’81fo o B(vo)
0

. (46)

and the functiorg(x) from
1 1 n2 One can determineq,v, from the condition of the extre-
- e PR et mum for Eq.(46).
2(1+g)|n(1+g)+ 2(1 9)in(1-g)] X 42 The method was proposed for approximate calculations in
) statistical mechanics of a disordered model on finite lattices.
One can regard Eq40) as a free energy for a chain of i enaples one also to identify Lee-Yang-Fisher zeroes. In
subsystems. Some part of subsystere,8<v, is inthe spin  case of real temperatures our generalization of REM gives

glass phase, the pari <v<uv, in Lee-Yang-Fisher, and the 50, accuracy. In our case we hope to achieve the same accu-
restv,<v<1 is in the paramagnetic phase. For the case Ofacy of calculations.

Edwards-Anderson model placed omtalimensional hyper- The solution of generalized RENGREM) at complex
cubic lattice temperatures was successful owing to a simple observation
N (38) that on the hierarchy of generalized REM a névee-
s(—vdN) e . ; _
z=Nd, E=-uNd, n(v)= (43  Yang-Fishey phase will exist only at levels between para
In2 magnetic and spin glass phases.
HereE is the energy and(E) is the entropy as a function of We are grateful to Fundacion Andes for Grant No.

energy for the corresponding ferromagnetic Ising model. AtC-13413/1 and ISTC for Grant No. A-102.
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